22-1학기 머신러닝 강의계획서

1. 과목 개요

강좌명 (Course Title)	머신러닝	담당교수 (Instructor)	김남균			
년도 (Year)	2022학년도	학기 (Semester)	1 학기	과목코드 (Course No.)	2150534601	
분반 (Class)	01	수강대상학과 (Open to)	4학년 컴퓨터	이수구분 (Course Classification)	전선-컴퓨터	
학점(설계학점*) (Credit)	3.0 (1)	주당시간 (Class hour per week)	03	성적스케일	점수 100기준 입력	
교과목유형	이론	강의언어		상담신청방법	이메일	
교수실		연락처 (Telephone)		이메일 (e-mail)	nnkyunkim@gmail.com	
강좌형식						
공학인증 교과목 관 련 항목	교과영역(*) (ABEEK Classification)		인증구분(*) (ABEEK Requirement)			
필수 선수과목						
권장 선수과목	선형대수, 확률및통계,알고리즘,프로그래밍(파이썬)					
교과목 개요 (Course Description)	머신러닝 기술의 핵심 원리를 학습하여 실전 프로젝트에 응용하는 실전 능력을 키운다. 선수지식: 선형대수, 확률및통계, 파이썬 프로그래밍					

교육 목표	숭실6대 핵심역량	공학인 <mark>증</mark> 역량
다양한 머신러닝 알고리즘의 핵심 원리 학습	창의역량 융합역량 공동체역량 의사소통역량 리더십역량 글로벌역량	

	주교재	*주교재/핸즈온 머신러닝/오렐리앙 제롱/한빛미디 어/2020/2판	
주요교재 및 참고자료 (Required Textx)	참고교재(대표)	*참고교재/Deep learning/lan Goodfellow, Francis BachYo/MIT Press/2016/1판*참고교 재/Hands-On Machine Learning with Scikit- Learn, Keras, and TensorFlow/Aurélien Géron/O'Reilly/2019/2nd	
학습준비사항			
수강학생 유의 및 참고사항	원서와 번역서 중 개인 선호에 따라 취사선택		

2. 주차별 강의개요

2.	1월 8의계표			
주 (Week)	핵심어 (Keyword)	세부내용 (Description)	교수방법	교재범 위 (Texts)
1	Introduction to ML	강의소개 (핵심 주제 소개, 수업 운영방안, 교재 및 실습 방안)	강의, 토론, 시험, 실험, 실습,실기	
2	Regression, Supervised learning, GDM	Regression, supervised learning, GDM	강의, 토론, 실험,실습, 실기	
3	Linear Regression	Linear Regression	강의, 토론, 실험,실습, 실기	
4	Logistic Regression, Probability	Logistic Regression, Probability	강의, 토론, 실험,실습, 실기	
5	Naive Baysian, Logistic Regression	Naive Baysian, Logistic Regression	강의, 토론, 실험,실습, 실기	
6	Model evaluation, Multinomial Logistic Regression	Model evaluation, Multinomial Logistic Regression	강의, 토론, 실험,실습, 실기	
7	Model evaluation	Model evaluation	강의, 토론, 실험,실습, 실기	
8	중간고사 (Midterm)	중간고사 (Midterm)	토론, 시험	
9	Overfitting, Generalization, Cross Validation	Overfitting, Generalization, Cross Validation	강의, 토론, 실험,실습, 실기	
10	SVM, NN	SVM, Neural net	강의, 토론, 실험,실습, 실기	
11	의사결정나무, 랜덤포레스트	의사결정나무, 랜덤포레스트	강의, 토론, 실험,실습, 실기	
12	백프롭(Backpropagation Algorithm), Optimzaion	백프롭(Backpropagation Algorithm), Optimzaion	강의, 토론, 실험,실습, 실기	
13	K-means, CNN	K-means, CNN	가이 트로 시해 시스 강의, 토론, 실험,실습 실기	.,
14	RNN , 클러스터링	RNN , 클러스터링	강의, 토론, 실험,실습 실기	·,
15	기말고사 (Final test)	기말고사 (Final test)	토론, 시험	